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ABSTRACT:
 
Extremes in soil moisture, either too much or too little, present a significant risk to agricultural productivity. Managing and 
mitigating risk requires information and knowledge to assess risk potential, implement risk reduction strategies and deliver responses 
to this risk. Synthetic aperture radars (SARs) are sensitive to the dielectric properties of soils and are thus well suited to provide 
quantitative soil moisture estimates to support effective risk assessment and mitigation. With the launch of RADARSAT-2 in 2007, 
Agriculture and Agri-Food Canada (AAFC) began testing the accuracy of fully polarimetric SAR data to estimate surface soil 
moisture. One model under investigation is the Integral Equation Model (IEM), including the calibrated IEM. The calibrated IEM 
introduces an optimum correlation length (�opt2) to improve the performance of the IEM. To test the ability of the IEM and the 
calibrated IEM to accurately estimate surface soil moisture, AAFC collected three quad-polarization RADARSAT-2 images in 2008 
over their western Canadian test site. Coincident with each SAR acquisition, AAFC collected approximately 2000 in situ soil 
moisture measurements using hand-held soil moisture probes. Surface roughness was measured using a 1-metre needle profiler. 
Overall, a better agreement was found between the calibrated IEM results and SAR-based backscatter coefficients compared to the 
original IEM results. The calibrated IEM also reduced the impact of variation in incidence angle on both the HH and VV backscatter 
coefficients. Inversion of the calibrated IEM was implemented using a look up table (LUT) approach. The LUTs were generated by 
simulating HH and VV backscatter coefficients using the �opt2 formulation. When sample sites were averaged by soil texture, the 
calibrated IEM was able to estimate volumetric soil moisture with an RMSE of 5.37%. 
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1. INTRODUCTION

Managing and mitigating risk to the agriculture sector requires 
information and knowledge to assess risk potential, implement 
risk reduction strategies and deliver essential responses. The 
availability of water, in particular the amount of moisture held 
in the soil, presents a significant risk factor for this sector. Too 
little available moisture can lead to short and longer term 
drought while saturated soils can prevent seeding and impede 
crop productivity. Thus monitoring available soil moisture is 
important in the assessment of agricultural risk. Synthetic 
aperture radars (SARs) are sensitive to the dielectric properties 
of soils and are thus well suited to provide quantitative soil 
moisture estimates to support effective risk assessment and 
mitigation. 
 
Since the launch of RADARSAT-2 in December of 2007, 
Agriculture and Agri-Food Canada (AAFC) has been evaluating 
the accuracy of these data for estimating surface soil moisture. 
Several approaches can be taken to model soil moisture from 
SAR backscatter. These approaches include the use of simple 
empirical models, semi-empirical models such as the Dubois 
(Dubois et al., 1995) and Oh (Oh, 2004) models, and 
physically-based models such as the Integral Equation Model 
(IEM) (Fung et al., 1992). Empirical and semi-empirical models 
require the derivation or adaptation of model coefficients to suit 
local conditions. Thus these approaches present challenges for 
large area operational implementation. Physical models are 
more robust, yet solving models such as the IEM is a complex 
task.  
 
This paper describes results achieved in estimating surface soil 
moisture using data from RADARSAT-2 and the IEM. An 
optimization technique is applied to the IEM model and 

accuracy statistics are presented for data collected over a 
Canadian research site. 
 

2. METHODOLOGY

Site Description and Data Collection

RADARSAT-2 and coincident ground data were acquired over 
an Agriculture and Agri-Food (AAFC) research site located in 
Canada’s western prairie region. The Carman site is located in 
the Red River Valley of southern Manitoba, Canada (49.50°N; 
97.18°W). This site is mixed prairie agriculture, with a large 
production of cereals (primarily wheat, barley and oats) and 
oilseeds (canola, flaxseed, sunflower and soybean). This site 
transitions from rich clay soils in the west, to better drained 
silty and clay loams and sandy soils in the east. 
 
For the purposes of this research, RADARSAT-2 data were 
acquired in the spring of 2008. RADARSAT-2 is equipped with 
a fully polarimetric SAR operating at C-band (5.3 GHz). With 
RADARSAT-2’s quad-polarization mode microwaves are 
transmitted and received in both horizontal and vertical 
polarizations, and the phase between these polarizations is 
preserved. This configuration permits the synthesis of any 
polarization. In April and May of 2008, fine quad polarization 
acquisitions were programmed for the Carman research site 
(Table 1). These fine quad pol data have a nominal spatial 
resolution of 8 meters, with a swath of 25 km. Incidence angles 
for these acquisitions ranged from 30o to 35o. 
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Date Mode Orbit 
April 23 FQ11 ASC 
May 10 FQ15 ASC 
May 17 FQ11 ASC 

 
Table 1.  2008 RADARSAT-2 acquisitions over Carman, 
Manitoba 
 

Surface soil moisture was measured coincident to each SAR 
acquisition using the ThetaProbe (Delta-T Devices), at a 6 cm 
depth. For each SAR acquisition soil moisture was measured at 
46 sites (within 31 fields). At each site, soil moisture was 
measured at 16 sample points with three replicates collected at 
each point. Thus for each SAR acquisition, more than 2200 soil 
moisture measurements were collected. Surface roughness 
measurements were also collected for each field using a one-
meter needle profiler. The profile photos were processed to 
extract the surface roughness parameters rms height ( ) and 
correlation length ( ). Measurements were taken in the look 
direction of the radar (78 degrees azimuth with respect to true 
north). Five sampling points were established for each site with 
a minimum distance of 5 metres between each point. Two 
replicates were obtained at each sampling point, thus yielding 
ten surface roughness profiles per site. 

s
�

 
2.2

2.3

Data Processing 

Pre-processing of RADARSAT-2 data was achieved using the 
SAR Polarimetry Workstation (SPW), an add-on module of PCI 
Geomatica®. A 5x5 boxcar filter was applied to the single look 
complex data to reduce speckle noise. Once the intensity 
channels were derived, slant range to ground range conversion 
was applied. These ground range products were then geo-
referenced using a set of thirty ground control points, with an 
average root-mean-square error of less than two pixels achieved 
for all SAR images. The image registrations were performed 
using a third-order polynomial transformation and nearest-
neighbour resampling. 

 
The Integral Equation Model 

For a given radar configuration, the backscatter models simulate 
the backscatter coefficient of a surface from its physical 
proprieties. In this study, a model based on the theory of 
electromagnetic wave scattering from a rough surface under 
simplifying assumptions has been used: The Integral Equation 
Model (IEM). This model is appropriate for randomly dielectric 
rough surfaces (Fung et al. 1992). It is based on analytical 
solutions of the integral equations for tangential surface fields 
and accounts for both single and multiple surface diffusion 
phenomena. In a broad sense, it can be applied to simulate the 
backscattering behaviour in a wide range of roughness values 
that are usually encountered for agricultural surfaces. The 
validity domain of the IEM is defined by a set of inequalities 
such that (Fung, 1994): 3�sk , rsk ����2  and 

1}))sin1(92,0(exp{ ])46,0()cos[( 5,05,02 ���� ���� kksk , 
where �r is the soil dielectric constant,  is the roughness 
correlation length (cm), s is the roughness RMS height, � is the 
local incidence angle, k is the wave number (cm

�

-1), and � is a 
constant equal to 1.2 or 200 for exponential or Gaussian 
roughness autocorrelation functions, respectively.  

Before testing the performance of the IEM to estimate soil 
moisture, forward modeling was used to compare simulated 
(from the IEM) to measured (from RADARSAT-2) backscatter. 
Backscatter was simulated using field data (soil moisture and 
roughness) and the RADARSAT-2 configuration parameters 
(frequency, polarization, and incidence angle) as inputs into the 
IEM. The model developed by Peplinski et al. (1995) was used 
to obtain the relative soil dielectric constant from measured 
volumetric water content.  

To improve the performance of the IEM, the semi-empirical 
calibration approach proposed by Baghdadi et al. (2006) was 
also evaluated. Baghdadi et al. (2006) introduced an optimum 
roughness correlation length �opt2 expression in the backscatter 
coefficient calculation. This parameter is obtained by forcing 
the IEM until a good agreement is reached between simulations 
and SAR image data. These calculations were performed using 
measured RMS roughness height as well as soil moisture 
content as ground data input parameters. This optimum 
correlation length is expressed as: 
 

          � � � ��	
��� rms�� sinopt2�                           (1) 

 
Where: 
 

026.4HH ��
289.3VV ��

744.1VVHH ��� ��
0025.0VVHH ��� ��

551.1HH ��
222.1VV ��
026.4HH ��
289.3VV ��

744.1VVHH ��� ��
0025.0VVHH ��� ��

551.1HH ��
222.1VV ��

 
 
 
 
 
 
 
To test the efficiency of this calibration technique, a validation 
was undertaken by comparing measured and simulated 
backscatter coefficients for the original IEM, where � values are 
those measured at each sampling site, and the calibrated version 
of IEM, where � values are replaced by the optimum values 
�opt2. 
 

3. RESULTS AND DISCUSSION 

Simulated data by the original IEM showed significant 
fluctuations with an overestimation of SAR backscatter. This 
result is not surprising, since previous studies have shown that 
correlation length measurements are very sensitive to profile 
length (Davidson et al., 1998) and relatively short lengths were 
used in this study (1 m). Very long profile lengths (>200 � , 
where  is the roughness correlation length) are required to 
achieve accurate estimation of roughness parameters. However, 
such measurements are difficult to achieve during validation 
campaigns where many measurements are needed under 
constantly varying field conditions.  

�

 
In addition to assessing errors on a site-by-site basis, the 
performance of the IEM was also evaluated by averaging 
samples according to broad soil texture classes. These classes 
included clay soils, sandy soils and a third class of silty and 
clayey loams. This averaging approach significantly reduced 
noise in the error analysis. Ideally, site specific soil moisture 
estimates are preferred. However, provision of average soil 
moisture estimates over areas with similar soil properties is of 
value for landscape or watershed based modeling and decision-
making. 
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The associated statistical calculations are summarized in Table 
2. Overall, a better agreement was found between the calibrated 
IEM results and SAR-based backscatter coefficients compared 
to the original IEM results. This was particularly true for the 
HH polarization. Only a small reduction in error was observed 
for VV. When averaged over texture classes, differences 
between the simulated and measured backscatter were 
significantly reduced for all models (Table 1 and Figure 1). In 
addition, improvements in the IEM performance when using the 
optimum correlation length were more pronounced for the VV 
polarization, when the data were averaged. 
 
 

RMSE (dB) 
Pol. Model Individual 

sites 
Averaged per soil 

texture class 
IEM 7.43 3.81 HH 

Calibrated IEM 6.65 3.08 
IEM 5.09 3.79 VV Calibrated IEM 5.06 2.90 

(a) Original IEM and HH backscatter 

 
Table 2.  Root mean square error (dB) statistics for IEM model 
predictions 
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Figure 1. Simulated HH (top) and VV (bottom) backscatter 
coefficients averaged by soil type using IEM and calibrated 
IEM plotted against derived backscatter coefficients from 

RADARSAT-2 images 
 
 
The calibrated IEM also reduced the impact of variation in the 
local incidence angle on both the HH and VV backscatter 
coefficients (Figure 2). This reduced sensitivity will be 
beneficial when implementing the calibrated IEM over 
agricultural landscapes with topographic variability. 

 
Figure 2.  Simulated HH backscatter coefficients (z-axis) versus 

incidence angle (y-axis) and soil moisture (x-axis) using the 
original IEM and calibrated IEM 

(b) Calibrated IEM and HH backscatter  

 
 
The calibrated IEM inversion to estimate surface soil moisture 
was implemented using a Look-Up Table (LUT) approach. This 
method involves the creation of a table of backscatter values 
associated with surface soil moisture, roughness rms height, and 
incidence angle values generated by performing multiple runs 
of the calibrated IEM model within its validity range. The 
implemented direct search algorithm attempts to minimize a 
scalar value representing the difference between measured and 
simulated backscatter coefficients.  
 
The IEM inversion was applied on a pixel-by-pixel basis to 
each of the three RADARSAT-2 quad-pol images. Figure 3 
provides maps of estimated volumetric soil moisture for April 
24, May 10 and May 17. Comparing the in situ soil moisture 
measurements to the estimates from the calibrated IEM, and 
averaged over soil texture, the root mean square error of the soil 
moisture estimate was 5.37% (Figure 4). 
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24 April 2008 
(FQ11)

10 May 2008 
(FQ15)

17 May 2008 
(FQ11)

24 April 2008 
(FQ11)

10 May 2008 
(FQ15)

17 May 2008 
(FQ11)  

Figure 3.  Soil moisture map derived using calibrated IEM for 
24 April, 10 May and 17 May 2008  

 
 

 
 

Figure 4.  Comparison between soil moisture modeled by 
calibrated IEM and in situ measured soil moisture

 
4. CONCLUSIONS

With the launch of RADARSAT-2 in 2007, Agriculture and 
Agri-Food Canada (AAFC) began testing the accuracy of fully 
polarimetric SAR data to estimate surface soil moisture. Soil 
moisture, either too little or too much, can result in substantial 
risk for the agriculture sector. Various approaches have been 
proposed to model soil moisture from Synthetic Aperture Radar 
(SAR) data. Physically based models, such as the Integral 
Equation Model (IEM), can produce more robust results 
although implementation of models such as the IEM can be 
complex.  
 
AAFC acquired multiple polarimetric RADARSAT-2 images 
over a Canadian prairie test site to evaluate the IEM and the 
calibrated IEM for soil moisture estimation. The calibrated IEM 
introduces an optimum correlation length (�opt2) to improve 
the performance of the IEM. Overall, a better agreement was 
found between the calibrated IEM results and SAR-based 
backscatter coefficients compared to the original IEM results. 
The calibrated IEM also reduced the impact of variation in 
incidence angle on both the HH and VV backscatter 
coefficients. Inversion of the calibrated IEM was implemented 
using a look up table (LUT) approach. When sample sites were 
averaged by soil texture, the calibrated IEM was able to 
estimate volumetric soil moisture with an RMSE of 5.37%. 
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