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the sense that, in the former new vector variables that define 
the axes of greatest variability in the data are created, while in 
the latter the original variables that best describe differences 
between given groups are identified.  

 
Strachan et al. (2002) taking reflectance measurements nine 
times during crop growth found that though individual 
reflectance-based indices demonstrated the relative differences 
between application rates and identified both nitrogen and 
water stresses at various times in the growing season, no single 
index was able to describe the status of the corn crop 
throughout the season.. 
 
It is essential to find the most optimum narrowbands and 
hyperspectral indices to discriminate between different levels 
of stresses. In this we have considered the nutrient stress, water 
stress and disease stress. We also included the discrimination 
between varieties, considering it as a genetic stress.  
  

2.  METHODOLOGY 
  
2.1 Observation Details 
 
The study was conducted on potato crop. Different sets of data 
were used for different stresses. The field observations of 
reflectance were taken using ASD hand-held spectroradiometer 
operating in a range of 375-1075 nm (FieldSpec®Pro, 2000). 
The detail procedures of observation are described by Jain et al. 
(2007) 
 
For study of the disease, village Nijjarpura (31º34’29” N and 
75º01’00”E) in district Amritsar of Punjab state in India was the 
study area. The observations on late blight of potato were 
recorded on 14th December, 2004 in a single large potato field 
affected with late blight in nature at around 60 day of crop-
growth. Crops were at the same stage of development in the 
field during the observation. Variable late blight infected areas 
from the highly affected to the disease free crop could be 
located in the same field. The infestation was categorized into 
various levels using the Blight Measuring Scale (BMS), which 
is based on the percentage plant area affected by late blight 
(Anonymous 1947). Patches of crop canopy exhibiting 0, 0.1, 
10, 25, 50, 75, 90 and 98 per cent foliage affected with late 
blight, with a minimum area of 1 x 1 m were selected at 10 
different locations for each category and for each category of 
infestation 10 spectral observations were made. However for 
this study, only upto 25 per cent disease infestation was 
considered, as beyond this there can not be disease reclamation 
measures.  
 
Other observations related to variety, nutrient and water stress 
were collected from experimental fields in the Central Potato 
Research Station in Jalandhar (31.160N latitude and 75.320E 
longitude), Punjab state of India.  

 
The experiment contained potato as the crop (cv. K. 
Chandramukhi) under study with seven nitrogen treatments in 
potato viz; 0 kg, 50 kg, 100 kg, 150 kg, 200 kg, 250 kg and 300 
kg per hectare. There were four replications for each treatment. 
The recommended dose of N for potato in CPRS is 180 kg/ha. 
All the N treatments received a common dose of phosphate (80 
kg/ha) and potash (150 kg/ha). Field observations for spectral 
reflectance were taken on 30th October, when the crop was 25 
days old.  

 
The irrigation experiment contained potato as the crop (variety 
– Kufri Jyoti) under study with three levels of irrigation 

treatments. Potato was planted in the second week of October 
and the observations were collected on 15th December. By the 
time of observation the I1 treatment had 2 irrigations, I2 4 and 
I3 5 irrigations. 

 
To study the difference between varieties four varieties of 
potato viz; Kufri Chandramukhi, Kufri Jyoti, Kufri Ashoka and 
Kufri Jawahar were grown. The characteristics of these 
varieties are given in table 1. The varieties were grown using 
standard management practices recommended for potato crop. 
Potato was planted in the second week of October and the 
observations were collected on 15th December.  
 
Table 1. Salient features of potato varieties grown in the 
experiment 
 
Variety Year of 

Release 
Duration 
(Days) 

Plant 
Characteristic
s 

Foliage 
Characteristics 

Kufri 
Ashoka 

1996 70-80  
(Early) 

Medium tall, 
erect, medium 
compact and 
vigorous  

Green, Leaves 
intermediate, 
rachis green 

Kufri 
Chandram
ukhi  

1968 80-90 
(Early) 

Medium tall, 
spreading, 
open and 
vigorous 

Grey-green, 
Leaves open, 
rachis green 

Kufri Jyoti 1968 90-100 
(Medium) 

Tall, erect, 
compact and 
vigorous 

Grey-green, 
Leaves 
Intermediate, 
rachis green 

Kufri 
Jawahar 

1996 80-90 
(Early) 

Short, erect, 
compact and 
vigorous 

Light Green, 
leaves open, 
rachis green 

 
2.2 Data Analysis 
 
2.2.1 Method for selection of optimum wavebands  

 
The optimum bands are set of those bands, which have least 
correlation among themselves, high information content and 
are able to discriminate the target. These three properties can be 
quantified through Band-band R2, Principal component analysis 
and discriminant analysis, respectively (Thenkabail, 2004). 
 
Band-band r2 models (BBR2M)  

 
Every single waveband (�i) was correlated with every other 
waveband (�j) leading to lambda by lambda plots where r2 was 
plotted with grey shading i.e. darker to bright scaling for low to 
high r2. This helped to determine areas rich in information areas 
of ("bulls eye") and areas of data redundancy areas of ("empty 
spots"). A very high correlation (high R2 value) between any 2 
wavebands indicates similar or redundant information. The 
areas of lowest correlation between wavebands indicate that the 
two bands contain unique information about the species 
(Thenkabail et al., 2004). The wavelength combinations of 5 
lowest values of r2 from all the combinations were used for the 
study. For computation of BBR2, all wavelength combinations 
were correlated to each other and than squared the r.  
 
Principal component analysis (PCA) 

 
PCA was used to reduce the 68 wavebands hyperspectral data 
to a few bands that explain most of the variability. The PCA 
was carried out using the statistical software SPSS-10. Only the 
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PCs having eigen values greater than 1 were selected for final 
analysis. 

 
Stepwise discriminant analysis 

 
The discriminant analysis was carried out for four potato 
varieties, seven nitrogen levels, three irrigation levels in potato 
and late blight disease infestation upto 25 percent. The whole 
range of wavebands were divided into five parts (400-490, 500-
590, 600-690, 700-790 and >800 nm) for getting the 
discriminating wavebands in all the region of the spectrum.  
 
2.2.3 Narrowband Indices 
 
Large number of narrowband vegetation indices was computed 
for each set of spectral data. The vegetation indices computed 
for this purpose included, structural indices: SR (Simple ratio), 
NDVI (Normalized difference vegetation index), RDVI 
(Renormalized difference vegetation index), MSR (Modified 

simple ratio), SAVI (Soil adjusted vegetation index), MSAVI 
(Modified soil adjusted vegetation index), OSAVI (Optimised 
soil adjusted vegetation index); Chlorophyll indices: MCARI 
(Modified chlorophyll absorption reflectance index), MCARI1, 
MCARI2, TCARI (Transformed chlorophyll absorption 
reflectance index), TVI (Triangular vegetation index), SIPI 
(Structural insensitive pigment index), NPCI (Normalized 
pigment chlorophyll index); and Red edge indices: Red edge 
750/700,  Red edge 740/720 and ZTM (Zarco Tejada and 
Miller).  The details of these indices are presented in table 2. 
The discriminant analysis was done to find out the best indices, 
which can differentiate potato varieties, nitrogen levels, 
irrigation levels and disease infestation. The principal 
component analysis was performed over the set of vegetation 
indices, found through discriminant analysis for nitrogen levels. 
The first two principal components containing about 90% of 
the variability of the vegetation indices were used for plotting 
scatter plot of the nitrogen levels. 
 

 
Table 2. Narrowband/ hyperspectral Vegetation Indices used in the study 

Index Computation Reference 

Structural indices 

NDVI (Normalized Difference 
Vegetation Index) 

(ρn - ρr)/( ρn + ρr) Rouse et al. (1973) 

SR (Simple Ratio) ρn / ρr Birth & McVey (1968) 
SAVI (Soil Adjusted Vegetation 
Index) 

(ρn - ρr) (1+L) / ( ρn + ρr + L) 
where L = 0.5 

Huete (1988) 

MSAVI2 (Modified SAVI) ρn + 0.5 – ((ρn + 0.5)2 – 2 (ρn - ρr))0.5 Qi et al. (1994) 
OSAVI (Optimized SAVI) (1+0.16) (ρ800 – ρ670)/( ρ800 + ρ670 + 0.16) Rondeaux et al. (1996). 
MSR (Modified SR) MSR = ((R800 – R670)-1) / ((R800 + R670) 0.5 + 1) Chen (1996) 
RDVI (Renormalized Difference 
Vegetation Index) 

RDVI = (R800 – R670) / (R800 + R670)0.5 Roujean and Breon (1995) 

Chlorophyll/Pigment related indices 

MCARI (Modified CARI) MCARI = [(R700 – R670)-0.2(R700 – R550)] 
(R700/R670) 

Daughtry et al. (2000) 

TCARI (Transformed CARI) TCARI = 3 [(R700 – R670)-0.2(R700 – R550) 
(R700/R670)] 

Haboudane et al. (2002) 

TVI (Triangular vegetation 
index) 

TVI = 0.5 [120 (R750 – R550) – 200 (R670 – R550)] 
 

Broge and Leblanc (2000) 

SIPI (Structural insensitive 
pigment index) 

SIPI = (R800 - R445)/(R800 + R680) Penuelas et al. (1995) 

NPCI (Normalized Pigment 
Chlorophyll Index) 

NPCI = (R680 – R430) / (R680 + R430) Penuelas et al. (1995) 

MCARI1 MCARI1 = 1.2 [2.5 (R800 - R670)  - 1.3 (R800 - 
R550)] 

Haboudane et al. (2004) 

MCARI2 MCARI2 = 1.5 [2.5 (R800 – R670)  - 1.3 (R800 - 
R550)]/ [(2 R800 + 1)2 – (6R800 –5 (R670)0.5 ) - 0.5] 

Haboudane et al. (2004) 

Red edge indices 

Red edge 750~700 R750 – R700 Gitelson & Merzylak (1997) 
Red edge 740~ 
720 

R740 – R720 Vogelmann et al. (1993) 

ZTM (Zarco Tejada and Miller) ZTM = (R750 / R710) Zarco Tejada et al. (2001) 
 
 
 

3.  RESULTS AND DISCUSSION 
 

The hyperspectral data in the 400-1070 nm was obtained for 
four varieties of potato viz; Kufri Chandramukhi, Kufri Jyoti, 
Kufri Ashoka and Kufri Jawahar, seven nitrogen levels at 0, 50, 
100, 150, 200, 250 and 300 kg/ha, three irrigation scheduling in 
potato and late blight disease infestation in potato crop for early 

late blight disease detection from disease free to 25 percent 
infestation.  

 
3.1 Band-band r2 models (BBR2M) of hyperspectral data 
  
For every vegetation and crop species a rigorous search 
criterion was developed wherein every single waveband was 
correlated with every other waveband. A very high correlation 
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(high R2 value) between any two wavebands indicates similar 
or redundant information. The areas of lowest correlation 
between wavebands indicate that the two bands contain unique 
information about the species (Thenkabail et al. 2004). In order 
to search for waveband performance, pooled data of four potato 
crop varieties, seven nitrogen levels, three irrigation levels in 
potato and four levels of late blight disease infestation were put 
together and analyzed. The most frequently occurring 
wavebands in the least correlation set, included the wavelength 
pertaining to green (520 and 560 nm), red (660-690 nm), red 
edge (730-740 nm) and NIR (760-810, 960 and 1030 nm) 
regions of the spectrum.  
 
3.2 Principal component analysis 

 
Principal component analysis (PCA) was carried out to reduce 
the 69 wavebands into few wavebands. The first three principal 
components for four potato varieties and late blight disease 
infestation explained 94.42 and 97.99 % variability whereas 
first two principal components for seven nitrogen treatments 
and three irrigation levels 96.64 and 97.77% variability, 
respectively. Therefore, in order to explain about 95 percent 
variability, the sixty-nine wavebands can be reduced to two to 
three new principal component (PC) wavebands (PC1 to PC3). 
This will lead to reducing the volume of data by about 95 
percent. In Table 4, the wavebands that provide the highest 
factor loadings are listed. Thenkabail et al. (2004) considered 
the first five wavebands that provide the highest factor loadings 
for crops, shrubs, grasses, and weeds on first five PCs, which 
explained the variability of 90 to 97 percent of the dataset. The 
PC1 was mostly dominated by the NIR region of the spectrum 
for the vegetation due to very high reflectance in this region 
however the PC2 and PC3 were mostly dominated by green 
region (520-580 nm) for irrigation, blue (400-420 nm) and red 
region for disease (610-690 nm) and red region (620-690 nm) 
for nitrogen levels and whole visible region for varieties (400-
430, 490-510, 630 and 690 nm).  Thenkabail et al. (2004) also 
found that red region dominated in PC2 for crops and weeds. 
 
3.3 Stepwise discriminant analysis 

 
The discriminatory power of hyperspectral data was assessed 
for four potato varieties, seven nitrogen levels, three levels of 
irrigation and late blight disease intensity upto 25 percent. The 
optimal Wilk's lambda values were achieved with fifteen 
wavebands for differentiating the four varieties of potato, seven 
wavebands for discriminating seven nitrogen treatments, five 
wavebands for differentiating the three irrigation levels in 
potato and late blight disease infestation in potato. The most 
frequently occurring wavebands for achieving the optimal 
Wilk's lambda values for four potato varieties, seven nitrogen 
treatments, three irrigation levels and late blight disease 
infestation were 700, 730, 750, 760, 780 and 1070 nm, centered 
at red edge and NIR region of the spectrum.  
 
3.4 Optimal waveband selection 

 
The wavebands that provide the best results in the three 
methods (Principal component analysis, BBR2M and stepwise 
discriminant analysis) were pooled together to determine their 
frequency of occurrence in the 400 to 1070 nm range. The three 
methods (PCA, BBR2M and SDA) provide complimentary and 
supplementary information. The PCA explains variability in 
data and reduces data redundancy, BBR2M eliminates all 
redundant bands and provides wavebands that best model 
vegetation characteristics, and the SDA tests the strength of 
data in separating or discriminating species types. 

 
The most frequently occurring wavelength for potato varieties 
were 400, 420, 430, 680, 690, 760, 800, 810 and 960 nm. These 
wavelengths cover the blue, red and NIR region of the 
spectrum. Patel et al. (2003) reported that 560, 670, 710, 870, 
1100, 1480, 1700 and 1800 nm bands were highly correlated 
with fractional cover. The frequency of occurrence 2 or greater 
than 2 was considered for selection of bands for Nitrogen levels. 
The wavelengths were 560, 650, 730 and 760 nm. Blackmer et 
al. (1994) reported that reflectance near 550 and 710 nm were 
better for detecting corn plant N deficiencies compared with 
reflectance at other wavelengths. In general, N deficiency 
usually decreases leaf chlorophyll concentration resulting in an 
increase in leaf reflectance in both green centered (550 nm) and 
red edge (700–720 nm) ranges (Daughtry et al., 2000; Zhao et 
al., 2003). 

 
The wavelengths of 690, 730, 780 and 800 nm were having 
occurrence of 2 or above considered for selection of late blight 
disease in potato. Similarly, the frequency of occurrence 2 or 
greater than 2 was considered for selection of bands for 
different irrigation scheduling in potato. The wavelengths were 
520, 560, 660 and 790 nm. 
 
The wavelengths considered for potato varieties, nitrogen 
levels, irrigation levels and disease infestation in potato were 
pooled together to determine their frequency of occurrence in 
the 400 to 1070 nm range (Figure 1). The highest frequency of 
occurrence was found in 690 nm (10 times) followed by 560 
nm (8 times), 730 and 760 nm (6 times), 780 nm (5 times), 520, 
660, 790 and 800 nm (4 times). The wavebands found in all the 
three analysis covered the green (520 and 560 nm), red (660 
and 690 nm), red edge (730 nm) and NIR (760, 790 and 800 
nm) region of the spectrum. The wavebands found suitable in 
our study were shown to have utility as shown by various 
researchers (Table 3).   
 
Table 3. Selected wavebands for crop stress detection and their 

significance 
Spectral 
region 

Wavelength 
(nm) 

Significance 

Green 520, 560 Green band peak or the point 
maximal reflectance in the 
visible spectrum. (Thenkabail et 
al. 2000) 

Red  660, 690 Absorption maxima. Maximum 
Chlorophyll Absorption 
Greatest soil crop contrast, 
Sensitive to biomass and LAI 
(670-680) (Thenkabail et al. 
2004). 680 nm is responsible for 
chlorophyll a pigment 
estimation (Blackburn, 1998a)  

Red edge 730 Plant stress is best detected at 
red-edge bands centered around 
705 nm and 735 nm (Elvidge 
and Chen, 1995, Thenkabail et 
al. 1999) 

NIR 760,780, 790, 
800 

Early NIR. More sensitive to 
changes in chlorophyll content 
than a broad NIR band. 
(Thenkabail et al. 2000) 
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Figure 1. Frequency of occurrence of bands for pooled analysis 

of potato varieties, nitrogen levels, Irrigation levels in 
potato and late blight disease infestation in potato  

 
3.5 Selection of best vegetation indices 
 
Apart from the best bands we also tried to select the best 
indices for crops stress discrimination in potato. Stepwise 
discriminant analysis was carried out to select the best indices, 
from the set of indices defined in table 2, for discrimination. 

  
The discriminant analysis of different vegetation indices for 
four potato varieties showed that simple ratio, ZTM, RE 
750/700 and RE 740/720 were able to discriminate four 
varieties. Nitrogen levels could be discriminated by RE 
740/720 and SIPI. Nitrogen concentration in green vegetation is 
related to chlorophyll content, and therefore indirectly to one of 
the basic plant physiological processes: photosynthesis 
(Haboudane et al. 2002). As the nitrogen level increases the 
SIPI gradually increases upto 200 kg N per hectare due to its 
effect on chlorophyll concentration. Penuelas et al. (1995) 
found that SIPI, using these wavelengths, provided that the best 
estimate of the ratio of Cars:Chl a for a range of individual 
leaves of different conditions. Red edge indices which covered 
700 to 750 nm wavelength were found the most significant for 
differentiating different nitrogen levels. As nitrogen content is 
directly related to the chlorophyll content of the plant and 
chlorophyll red edge exhibits the greatest change in reflectance 
per change in wavelength of any green leaf spectral feature in 
the visible and NIR (Elvidge and Chen, 1994).  The previous 
studies also indicated that high spectral resolution 
measurements of the chlorophyll in red edge region (700-795 
nm) could be used to detect trace quantities of green vegetation 
(Elvidge et al. 1993). The disease infestation in potato crop 
could be differentiated by ZTM, SIPI, RE 750/700 and RE 
740/720. Among all the vegetation indices that were found 
useful for discriminating the nitrogen and disease was related to 
the red edge position of the spectrum and the ratio of red edge 
RE 740/720 was found the most suitable. Irrigation levels could 
be discriminated by simple ratio and TVI. The canopy density 
and chlorophyll content in plants is dependent on water 
availability to the plants. Haboudane et al. (2004) reported that 
Triangular Vegetation Index (TVI) seemed to be a good 
candidate for green LAI estimations, but its sensitivity to 
chlorophyll content increases with the increase of canopy 
density.    
 
4. Conclusion 

 
The present need of agriculture is to increase the production by 
optimum utilization of resources. Hyperspectral remote sensing 

could be a valid option for detection of varietal performance, 
water and nutrient (nitrogen) requirement of the crop as well as 
the early detection of the disease like late blight in potato.  The 
present study identified the nine bands (520, 560, 660, 690, 730, 
760, 780, 790 and 800 nm) which best characterize the potato 
varieties, nitrogen levels, irrigation levels and early late blight 
disease detection in potato. The red edge indices performed 
best for separating variety, disease intensity, and nitrogen 
application rate. However, other indices like TVI and SR 
performed well for discrimination between different irrigation 
treatments.  
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